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ABSTRACT

A system built in terms of autonomous agents may require
even greater correctness assurance than one which is merely
reacting to the immediate control of its users. Agents make
substantial decisions for themselves, so thorough testing is
an important consideration. However, autonomy also makes
testing harder; by their nature, autonomous agents may re-
act in different ways to the same inputs over time, because,
for instance they have changeable goals and knowledge. For
this reason, we argue that testing of autonomous agents
requires a procedure that caters for a wide range of test
case contexts, and that can search for the most demand-
ing of these test cases, even when they are not apparent
to the agents’ developers. In this paper, we address this
problem, introducing and evaluating an approach to testing
autonomous agents that uses evolutionary optimization to
generate demanding test cases.

Categories and Subject Descriptors
D.2.5 [Software Engineering]|: Testing and Debugging

General Terms
Reliability, Verification
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1. INTRODUCTION

The concept of autonomy, auto self; momos = law,
refers to self-governance, freedom from external influence
and/or authority. It is key to making software agents a dis-
tinctive class of computational systems and is an enabling
technology for building open, dynamic, and complex sys-
tems. Concerns about autonomy have appeared since the
advent of artificial intelligence, because intelligent entities
should be able, at least to some degree, to autonomously
decide which actions to take. More recently, however, sev-
eral different aspects related to agent autonomy, such as
operationalization, architecture, autonomy adjustment, and
others, have been discussed with greater intensity [11].
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Now, as software agents with built-in autonomy are in-
creasingly taking over control and management activities,
such as in automated vehicles or e-commerce systems, test-
ing these systems to make sure that they behave properly
becomes crucial. Testing traditional software systems, which
have reactive (or input-output) style behaviour, is known to
be non-trivial, but testing autonomous agents is even more
challenging, because they have their own reasons for engag-
ing in proactive behaviour that might differ from a user’s
concrete expectations, yet still appropriate; the same test
input can give different results for different executions.

To illustrate the issues involved in testing autonomous as
opposed to non-autonomous components, consider the fol-
lowing example. A component providing compression func-
tionality is tested according to two criteria: (1) the output
of the compress function is smaller than the input; (2) the
output of the compress function, when given as input to
the decompress function, returns the original input. In this
simple non-autonomous testing example, the tester may not
know the compression algorithm used by the component,
and does not know the exact data that will be output from
the compress function. However, it can be expected that
the output will remain the same for a given input over time;
that is, the run-time context in which the tests are performed
does not change the test outcome. In comparison, the same
tests can be applied by a client asking an autonomous agent
to compress data, but there may be run-time variation in
the actual behaviour of the agent. The agent may have its
own internal goals and knowledge, both of which may change
over time, and these can affect the result returned, if any.
For example, the agent could choose different compression
algorithms based on the resources available, or delegate the
task to different subordinates over time, depending on which
it currently considers to provide the best service. To prop-
erly test the autonomous agent thus requires more than the
single tests on the predictable component: it requires the
same tests to be applied to the agent in a range of con-
texts. Ensuring that the range of contexts (in this example,
the range of algorithms or subordinates available and cho-
sen) tested against is adequate to declare the agent correctly
functioning is, therefore, a hard but important task.

Existing work on agent testing (for example, [1, 17]), deals
mainly with agent interactions and constraint enforcement.
In [1], agent interactions are observed to detect interac-
tion problems such as missed communication. By contrast,
Rodrigues et al. [17] propose to exploit social conventions
(i-e., norms or rules that prescribe permissions, obligations,
and/or prohibitions of agents) in an open multiagent system



AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

for integration testing. During test execution these con-
straints will be checked, and violations reported.

In the context of agent autonomy, however, only looking
for violations (related to constraints, norms, and the like) is
seldom sufficient. Confidence in the autonomous behaviours
of an agent must be established. In other words, we need
to answer the question: are these autonomous agents de-
pendable? In addition, autonomous agents should be able
to operate in open environments where different and even
unpredictable circumstances may arise. Testing must also
deal with this aspect.

In response to these concerns, in this paper we specify
an evolutionary testing approach, guided by a stakeholder’s
quality criteria, to test autonomous agents. We describe the
general testing procedure, evaluate it with a case study, and
analyse the benefit it brings. Our approach can be outlined
as follows. Stakeholder requirements related to autonomy
(i.e. requirements that an autonomous agent may satisfy
differently depending on its context) are transformed into
quality functions. We then evolve increasingly demanding
test cases using the quality functions as fitness measures,
where the lower the quality the agent produces, the tougher
we can infer the test case is, and the more likely the test
case is to survive and reproduce as the evolution progresses.
By evolving steadily tougher test cases, we test the agent
in a range of contexts, including those in which it is most
vulnerable to poor performance.

The motivations behind our approach are twofold. Firstly,
we believe that quality functions —derived from requirements
related to autonomy— can be used to evaluate autonomous
agents to build confidence in their behaviours, because meet-
ing such requirements contributes to agent dependability. It
is worth noticing that our aim is to evaluate the exhibited
performance of autonomous agents, not the mechanism un-
derlying autonomy itself. Secondly, because it is automated,
the use of evolutionary algorithms can result in more thor-
ough testing at comparatively lower cost than other forms of
testing, such as manual test case generation, which is tire-
some, error-prone and expensive. That is, large number of
challenging circumstances, generated by evolution, can be
used to test agents, with each test case seeking to expose
any possible faulty behaviour.

Since autonomous agents can behave differently under the
same setting, statistical evaluation methods may be needed
to properly evaluate each test case; for example, when the
expected quality must be achieved with a high average prob-
ability.

We implemented and applied the proposed approach to a
case study: a simulation of a cleaning agent. The obtained
results show that our approach outperforms random testing,
the basic alternative technique available.

The remainder of the paper is structured as follows. Sec-
tion 2 gives background notions about evolutionary testing
and presents related work. Section 3 and 4 introduce our
approach, while Section 5 discusses the case study used to
illustrate the approach and to assess its effectiveness. Fi-
nally, Section 6 concludes this work and presents future im-
provements.

2. BACKGROUND AND RELATED WORK

2.1 Background
Evolutionary testing (ET) [13, 21] is inspired by the evo-
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lution theory in biology that emphasizes natural selection,
inheritance, and variability. Individuals that are fitter have
a higher chance of surviving and producing offspring with
favourable characteristics of individuals being inherited. In
ET, we usually encode each test case as an individual in a
population of candidate test cases. In order to guide the evo-
lution towards better test suites, a fitness measure is defined
as a heuristic approximation of the distance from achieving
the testing goal (e.g., covering all statements or all branches
in the program). Test cases with better fitness values have
a higher chance of being selected for survival and reproduc-
tion. Moreover, mutation is applied during reproduction,
thereby enhancing diversity; an important consideration in
any and all evolutionary processes.

The key step in ET is the transformation from testing
objective to search problem, specifically through the fitness
measure; different testing objectives give rise to different
fitness definitions. For example, if the testing objective is
to exercise code inside an if block, one can define a fitness
function that gives lower values (considered as better) to
test cases that are closer to making the conditions of the
if statement true; the lowest (best) value is given to the
test cases that make the conditions true, so that the code
inside the if block is executed. Once a fitness measure has
been defined, different optimization search techniques, such
as local search, genetic algorithm, particle swarm [13] can be
used to generate test cases aimed at optimizing the fitness
measure.

2.2 Related work

The use of evolutionary search techniques for the auto-
matic generation of test data has been receiving increasing
interest from many researchers, reflecting a growing trend
towards Search Based Software Engineering (SBSE) [10].
The SBSE approach is also bridging the technology trans-
fer divide to industry. For example, Biihler and Wegener
[4] applied evolutionary functional testing in two automatic
systems: automatic parking and brake assistant systems for
Daimler’s Mercedes class cars. The systems investigated are
automatic, not autonomous, but the results of evolutionary
functional testing, which outperforms random and manual
testing, show the potential of this technique.

More directly relevant to this work, Nguyen et al. [14]
describe the combination of evolutionary and mutation test-
ing for testing autonomous software agents. For Nguyen et
al., fitness is defined to be mutant score, i.e. the number of
mutants killed. A mutant is a modified version of the origi-
nal agent under test containing a single deliberately seeded
fault. A mutant is said to be killed by a test input if the in-
put causes the mutant to exhibit different behaviour to the
original. Nguyen et al. approach the problem of testing for
autonomy indirectly, by using constraints and the fact that
while software agents are free to evolve, their behaviours
must obey the norms and rules that govern the operation of
the system in which agents are situated, or the constraints
imposed on the behaviours. Test cases that kill more mu-
tants are likely to reveal faults in the original agents, hence
they have better fitness values.

Fulfilment (or violation) of norms, and satisfaction (or
otherwise) of requirements, are directly comparable, as both
define what should occur. However, both the aims and the
approach taken here differ fundamentally from that of norm
monitoring. Systems that detect the violation of norms pro-
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vide tests (that just happen to occur at run-time) on agents:
whenever a norm may be fulfilled or violated, this is de-
termined and reported. However, the norm-monitoring ap-
proach does not attempt to rigorously test the agents in-
volved. The only ‘tests’ performed are due to states of the
system that happen to come about; the main concern is to
check actual satisfaction of requirements (compliance with
norms) at run-time. However, unless rigorous testing has
occurred beforehand, the use of this approach alone could
lead to a catastrophic violation, which would be detected
but only dealt with after it has occurred (when it is too
late). Our approach, on the other hand, attempts to cover
a range of test cases in preparation for the agents under test
to operate in a running system. The need for quality and
range of test cases is the most significant factor influenc-
ing our approach, as opposed to compliance in any single
instance.

In the agent-oriented software engineering literature, a va-
riety of research tackling different aspects of agent testing
have been proposed. Coelho et al. [5] proposed a framework
for unit testing of MAS based on the use of Mock Agents.
Their work focuses on testing the roles of agents at the agent
level. Mock agents that simulate real agents in communi-
cating with the agent under test are implemented manually,
each corresponding to one agent role. Sharing this inspira-
tion from JUnit [8], Tiryaki et al. [19] proposed a test-driven
MAS development approach that supports iterative and in-
cremental MAS construction. A testing framework called
SUnit, which is built on top of JUnit and Seagent [7], was
developed to support the approach, allowing the writing of
tests for agent behaviours and interactions between agents.
Dung et al. [12] proposed a semi-automated process for
comprehending software agent behaviours. Their approach
imitates what a human user, such as a tester, does in soft-
ware comprehension: building and refining a knowledge base
about the behaviours of agents, and using it to verify and ex-
plain behaviours of agents at runtime. The ACLAnalyser [1]
tool analyzes runs on the JADE [18] platform, intercepting
all messages exchanged among agents and storing them in a
relational database. This approach exploits clustering tech-
niques to build agent interaction graphs that support the
detection of missed communication between agents that are
expected to interact, unbalanced execution configurations,
and overhead data exchanged between agents.

As software agent development emerges, testing software
agents is receiving increased research attention. The above
work focuses on agent interactions, which is reasonable, be-
cause agents communicate primarily through message pass-
ing. However, none of this previous work explicitly tackles
agent autonomy, which is the objective of this paper.

Nuiiez et al. [15] introduced a formal framework to spec-
ify the behaviour of autonomous e-commerce agents. The
desired behaviours of the agents under test are specified by
means of a formalism, called utility state machine, that em-
bodies users’ preferences in its states. The operational traces
of the agents under test are checked against these specifi-
cations in order to detect problems. Our work differs from
[15] in that we investigate how to generate effective test cases
based on the exhibited performance of the agents under test,
not on their specifications.

3. OUR APPROACH TO AGENT TESTING

Autonomous software agents differ from traditional soft-
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ware in that they have their own goals and operate in a
self-motivated fashion.

We propose to apply the recruitment metaphor to evalu-
ate autonomous software agents. Here, software agents are
candidates and stakeholder requirements are used as evalu-
ation criteria. Each agent is given a trial period in which
a number of tests with different difficulty levels are to be
solved. Agents are recruited (trusted) only when they pass
the required quality criteria.

In requirements engineering, the importance of applica-
tion domain stakeholder goals has long been recognized. As
such, the concept of goal has been considered central to a
number of goal-oriented requirements engineering (GORE)
approaches [3, 6]. In GORE, soft-goals play a key role in
representing non-functional or “ility” requirements, such as
dependability, availability, and so forth, which denote the
important criteria for evaluating autonomy. Returning to
the recruitment approach to evaluating autonomous agents,
we propose to use stakeholder soft-goals as criteria for as-
sessing the quality of autonomous agents, since satisfying
quality criteria derived from these soft-goals is likely to in-
dicate that the agents are reliable.

We propose an evaluation methodology consisting of two
main steps:

1. Representing stakeholder soft-goals as quality functions.
Relevant soft-goals that need to be used to evaluate
agent autonomy are transformed or represented as qual-
ity functions for measuring stakeholder satisfaction.
This transformation is domain specific and depends on
the nature of the soft-goal as well as on the problem

domain.
. Evolutionary testing. In order to generate varied tests

with increasing level of difficulty, we advocate the use
of meta-heuristic search algorithms that have been used
in other work on Search Based Software Engineering
[10], and, more specifically, we advocate the use of evo-
lutionary algorithms. The quality functions or thresh-
olds of interest are used as objective functions to guide
the search towards generating more challenging test
cases.

As an example, Figure 1 illustrates the goals of a specific
stakeholder in an airport organization, namely the building
manager, who decides to assign the goal of airport clean-
liness to a cleaner agent. The notation used in the figure
is proposed in Tropos [3]. In this example, the agent must
operate autonomously, with no human intervention. On the
other hand, the agent must be robust and efficient as stated
in the two stakeholder’s soft-goals, depicted as two cloud
shapes. Applying the proposed approach, these two soft-
goals can be used as criteria to evaluate the quality of the
cleaner agent: the agent can be built with a given level of
autonomy. Robustness and efficiency are two key quality cri-
teria for evaluating it. If the cleaner agent can perform tasks
autonomously, but is not robust (for example, it crashes), it
is not ready to be deployed.

Regarding the robustness soft-goal, two sub-goals decom-
posed from robustness that are taken into account in this ex-
ample are maintaining-battery and avoiding-obstacles. (For
brevity, this analysis is not shown in Figure 1.) We can de-
fine a threshold for the maintaining-battery capability (e.g.
10%), and monitor the battery level at runtime. The bat-
tery level must be maintained at a sufficiently high level (>
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Stakeholder

Keep the airport
clean

Cleaner
Agent

regends
oal *
dependence

Figure 1: Example of stakeholders’ soft-goals

10%) within the period considered. Figure 2 shows an un-
acceptable scenario in which the battery level drops below
10%.

battery
level

10% \

time
Figure 2: An unaccepted scenario of the battery
level

Similarly, for the soft-goal avoiding-obstacles, one can de-
fine the distance to the closest obstacles during movement
as a quality criterion. Correspondingly, a quality threshold
¢ (distance units) can be defined, and the agent must stay
farther from obstacles than this threshold.

In reality, apart from robustness, we can impose many
other requirements related to autonomy on the cleaner agent:
stability, efficiency, safety, for example. Stability demands
the agent should avoid dropping its goals too frequently. Ef-
ficiency requires the agent to finish cleaning an area after a
specific amount of time, or it must bring an amount of waste
(e.g. 10 Kg) to the dustbins per hour. The safety require-
ment demands that the agent must switch to its ‘safe mode’
in undesirable circumstances, e.g., arms malfunction.

4. EVOLUTIONARY TESTING OF
AUTONOMOUS AGENTS

4.1 Encoding test inputs and evaluating results

Let us examine the possible input space for autonomous
agents. Georgeff and Ingrand [9] present a minimal design of
a reference architecture for BDI agents [2], which is widely
applied to build autonomous agents. In the architecture,
agents perceive the outside world (from the agents’ perspec-
tive) through a set of sensors and make changes to the world
through a set of effectors. Weyns et al. [22] complement the
architectural picture of multiagent systems with a reference
model for the environment, in which agents access the envi-
ronment by employing either perception (sense and percept),
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action (make changes to the environment), or communica-
tion (send and receive messages). Though the two architec-
tures appear to be slightly mismatched because of the com-
munication element, they actually fit well with one another
as agent communication involves environmental facilities —
incoming (inbox) or outgoing (outbox) buffers — receiving
a message can be seen as perceiving the inbox, and sending
one as placing it in the outbox. To this end, the outside
world from the perspective of an agent consists of environ-
mental artefacts and other agents. They are considered as
test inputs in testing software agents. Autonomous agents
monitor these elements actively to detect and reply to events
or changes in a timely fashion, or they can receive stimuli
from these elements and react proactively.

Encoding test inputs for ET is a crucial step as inappro-
priate encoding can result in losing inheritance in missed
opportunities. We propose to encode each input element
by means of one gene. A test case, consisting of a set of
all investigated elements, will be encoded as a chromosome.
A fundamental requirement for encoding test cases as chro-
mosomes is that offspring obtained by crossover of parental
genes contains only slight, non-disruptive changes (combi-
nations) compared to their parents. Since we encode each
environmental input by one gene (a string of bits of 0 or
1, for instance), the crossover operation on two genes is ex-
pected to produce two new genes that inherit the character-
istics of the two original genes. Thus, this ‘non-disruptive’
requirement is respected.

Since agents of the same kind (or instances of the same
agent) might give different outcomes in the same environ-
ment, i.e. from the same inputs, evaluating test results re-
quires statistical approaches. That is, test execution for a
single input setting may need to be repeated in order to ac-
quire the overall picture; a single execution per test case will
seldom provide a thorough test result judgment.

4.2 Testing procedure

The automated testing procedure is presented in Figure 3.
Its four steps are described as follows:

1. Generate initial population. A set of test cases is called
a population. Each test case is an individual in the pop-
ulation, and it represents a combination of states (i.e.
values) of environmental inputs. The initial popula-
tion can be generated randomly or taken from existing
test cases, created by testers.

2. Ezxecution and monitoring. Test execution involves in-
serting the autonomous agents under test into the test-
ing environment, made up of environmental inputs, so
that they can operate (i.e. perform tasks or achieve
goals). At the same time, a monitoring mechanism
is needed to observe and record the behaviours of the
autonomous agents. A number of executions need to
be performed repeatedly (or in parallel) in order to
provide sufficient data to statistically measure fitness
values in the next step.

3. Collect observed data and calculate fitness values. Cu-
mulative data from all executions are used to calculate
fitness values of selected test cases. The method of cal-
culating fitness values depends on the stakeholder soft-
goal of interest and the problem domain. Since calcu-
lated fitness values provide insight about improvement,
if no improvement is observed after a number of gen-
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erations, the test procedure stops. Otherwise Step 4 is
invoked.

. Reproduction. Two individuals are selected, and then
the crossover operation is used to produce one or two
new offspring. Finally, mutation is applied with a cer-
tain probability on one (or both) offspring. As with
natural evolution, selection is biased in favour of fitter
individuals.

1. Generate initial
population

2. Execution

Monit_oring

3. Collect data
and calculate
fitness

Improviment ?

4. Reproduce

new generation

No after N generations

Figure 3: Evolutionary testing procedure

5. CASE STUDY

In this section, we further analyze the cleaner agent, in-
troduced briefly in Section 3, and build a simulation of an
agent system composed of an artificial environment and the
cleaner agent to evaluate the proposed approach. We de-
scribe, in detail, the functionalities of the agent and the way
we use soft-goals to guide test generation and ultimately
evaluate the quality of the agent.

As mentioned in Section 3, we choose two soft-goals: ro-
bustness and efficiency to evaluate the quality of the cleaner
agent. By analyzing robustness, two further goals decom-

posed from it are maintaining-battery and avoiding-obstacles.

Similarly, efficiency can be decomposed into sub-goals as
well. All of them must be taken into account while evalu-
ating the quality of the cleaner agent. Each soft-goal gives
rise to a fitness function that can guide the generation of test
cases. In this paper we investigate only the goal avoiding-
obstacles, using a fitness function derived from the goal to
guide the generation of test inputs. The testing objective is
to make sure that the agent does not hit any obstacles.

5.1 Application

The artificial environment is a square area, A. In the area
A there can be obstacles, dustbins, waste, and charging sta-
tions located randomly. We define an environmental setting
as a particular configuration of A, in which numbers of ob-
stacles, dustbins, waste, and charging stations are located at
particular locations. Different settings pose different levels
of difficulty in which the cleaner agent must operate.

The cleaner agent is in charge of keeping that area clean.
In particular, it needs to perform the following tasks au-
tonomously:

1. Exploratory location of important objects.
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. Look for waste and bring it to the closest bin.

. Maintain battery life, with sufficient re-charging.

. Avoid obstacles by changing course when necessary.

. Exhibit alacrity by finding the shortest path to reach a
specific location, while avoiding obstacles on the way.

. Exhibit safely by stopping gracefully should movement
become impossible or battery level too low.

T = W N

These are all requirements related to autonomy; the way
in which the agent achieves them differs depending on the
context in which it finds itself. Each functionality gives rise
to a goal that the agent needs to achieve or maintain, and
multiple goals are active simultaneously during operation.
For instance, while exploring the area, the agent needs to
avoid obstacles and maintain its battery.

The simulation environment is implemented in JADEX
[16], extending an existing example of JADEX with a so-
phisticated capability to avoid obstacles. The cleaner agent
contains a belief base where information about current loca-
tion, visited locations, obstacles, dustbins, charging stations,
and so on are stored. In addition, the agent has a number
of goals and associated plans, with goal deliberation based
on goal conditions, such as creation, adoption and inhibition
conditions. At runtime, goals are adopted autonomously on
the basis of goal deliberation.

5.2 Preparation

5.2.1 Encoding test inputs

In this case study, an environmental setting (or a test
case) is composed of the quantity and location of obstacles,
dustbins, waste, and charging stations. Each of these factors
is encoded as a single gene, as follows (See also Figure 4):

e Divide the area A into RxR cells, R is called resolution.

e Place objects (i.e. obstacles, waste, bins, charging sta-
tions) into cells. A cell containing an object is denoted
by 1, while a content—free cell is denoted by 0.

1 0 1 0 1 0
0 1 1 0 1 0
0 1 1 0 1 0
1 1 1 0 1 1
0 1 0 1 0 0
1 0 1 0 0 0

Figure 4: Encoding test inputs

The resolutions of the environmental factors can be dif-
ferent and their quantity can be controlled in evolutionary
testing. For instance, we can choose the number of dust-
bins and charging stations to be as small as or smaller than
they are in reality, while the amount of waste and number
of obstacles can be chosen to be much higher.

During evolution, genes are crossed over and/or mutated,
resulting in new environments that combine previous envi-
ronments or in which objects change their location. In other
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words, the new environments only have relatively slight changes

compared to their parents, thus the requirements of encod-
ing test inputs, mentioned in Section 4.1, are respected.

5.2.2 Fitness computation

We define a fitness function f based on the distance to ob-
stacles encountered during the operation of the agent. Real-
time observations of the distance of the cleaner agent to all
obstacles are performed to measure f. Moreover, since the
test outcomes are different even for the same test input, we
need to repeat the execution of each test case several times
to measure statistical data representing the test outcomes.
This section determines a reasonable value for this repeti-
tion.

In exactly the same initial environmental setting, different
executions can result in different trajectories of the agent.
This is due to the random targets that the agent chooses
to reach, while exploring the environment. As a result, the
agent can find itself in trouble if the randomly-selected tar-
get is close to obstacles, or if the path to the target is ob-
structed by obstacles so that the probability of hitting ob-
stacles becomes high. On the other hand, if by chance, all
the selected targets happen to be far away from obstacles,
then the probability of hitting obstacles would be low.

In order to find an effective environment where the prob-
ability of encountering obstacles is high, we must run each
test case a number of times in order to reduce the influence
of those non-deterministic factors in agent decision making.
In the following, we determine how many executions of each
test case is reasonable, and how much time is needed for
each run so that the agent has enough time to exhibit its
behaviour. For the second question, 40 to 60 seconds is de-
termined to be sufficient for each execution, since within that
amount of time, the agent can visit all cells in the testing
area several times.

To answer the first question, we randomly generate a num-
ber of test cases and execute them repeatedly a number of
times. Figures 5(a) and 5(b) show cumulative box-plots of
the closest distances to obstacles over the number of execu-
tions of two test cases T'C'1 and T'C2. In each execution we
measured the distance of the agent to the closest obstacles in
real-time. We use a box-plot presentation because it shows,
not only the closest and furthest distance of the whole oper-
ation time, but also the ‘hardness’ of a test case. That is, the
quartiles of 25% and 75% of the distances form a range that
provides the typical dispersion of distances. If the range is
close to 0, the probability of encountering obstacles is high.

In general, we can observe, from Figure 5, that the boxes
in each figure tend to converge in terms of size and posi-
tion. We perform a pilot experiment with a large number of
test cases, each has been executed a number of times. The
fitness value is non deterministic, because of the non deter-
ministic behaviour of the agent under test. However, the
average fitness value converges toward its final value after
4.6 executions (on average), as apparent from the cumula-
tive box plots. Hence, we use 5 test case executions in our
experiments to determine the fitness value associated with
a test case.

5.2.3 Fitness function

Let D be the vector of all the closest distances to obstacles
observed in all executions, and ¢ be the smallest distance
allowed (user-defined threshold). Then, fitness is defined as
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(a) Cumulative box-plots for TC1
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Figure 5: Cumulative box-plots for two test cases:
distance versus number of executions
follows:

min(D) + w1 * quartilel(D) + w3 * quartile3(D)
if min(D) > e,

min(D) — e if min(D) <,

400 if the agent cannot move and suspend safely.

f=

where min(D) is the smallest value of the vector D, quar-
tilel (D) is the quartile of 25% of D, and quartile3(D) is
the quartile of 75% of D. The weight of the two last values
w1, ws must be close to 0 as they are less important than
the min(D) value with respect to f. In fact, the reason for
using the quartile values is that, among a set of test cases,
we favour those that have distance dispersion (i.e. box-plots)
close to 0 if they have the same min(D). We have also per-
formed pilot experiments without taking into account the
distance dispersion, and the obtained results show that f is
less effective when the dispersion is discarded.

The search objective is to bring the box-plots close to the
threshold & whenever min(D) is still greater than the thresh-
old e. Otherwise, only the value min(D) is relevant because
it represents an error (the agent violates the threshold), in
these cases, the algorithm searches for min(D) as close to
0 as possible. In the case when the agent cannot move be-
cause of surrounding obstacles and it suspends safely, then
the value of f is oco; that is, the value of f can itself guide
the search to skip the obvious cases when the agent is sur-
rounded by obstacles.

5.3 Evolutionary testing

Our testing objective is to assess the robustness of the
cleaner agent. In particular, we test only for the capability
of the agent to avoid obstacles by using the fitness function
f, defined in the previous section. A genetic algorithm (GA)
is used to generate test cases that minimize f, that is to find
the test cases that lead the agent to breach the threshold e
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(or f < 0), which is considered as fault.

The experiments were performed on three computers with
Intel processors, Core 2 Duo (1.86Ghz), Pentium D (3Gz),
and Xeon (4x3Ghz), each has more than 2Gb RAM. Each
test case was executed on 5 simulation platforms (i.e., 5
executions per test case) in parallel. The observed data from
the platforms was combined to calculate f. In evolutionary
testing we choose £ = 0.05, and w1 = w3 = 1/3.

5.3.1 Experiment 1

In this first experiment, we encode the locations and quan-
tity of waste, obstacles, dustbins and charging stations by
four genes: one gene for each kind of object. Their resolu-
tions are chosen as follows:

Kind Resolution Max quantity
Waste 12x12 144
Obstacle 8x8 64
Dustbin 2x2 4
Charging station 2x2 4

This experiment was performed on the early beta version
of the agent that does not implement the capability to find
the shortest path to reach a specific location, and there is
no interaction between the two goals: avoiding-obstacle and
maintaining-battery. The latter can inhibit the former while
the agent goes to a charging station.

Evolutionary testing is executed with three different con-
figurations: 60, 90 and 120 generations. The best results of
all configuration give the optimal value f =-0.05 (or the dis-
tance to obstacles is 0). This reveals that the agent is faulty,
because it hits obstacles. Our testing technique reveals two
faults in the implementation of the cleaner agent:

Fault
F1

Description

F1 occurs when the cleaner has two competing
goals active at the same time: maintaining-battery
and avoiding-obstacles. The agent favours the goal
maintaining-battery regardless of the latter goal,
so it hits obstacles on the way to a charging sta-
tion. The value of f corresponding to this fault is
very close or equal to the optimal value (-0.05).
F2 is that the agent gets too close to an obstacle
before the goal maintaining-battery is triggered.
The value of f corresponding to this fault is smaller
than 0, but far away from the optimal value.

F2

To evaluate the performance of evolutionary testing, we
also performed random testing on the cleaner agent. For
random testing, test cases were represented in exactly the
same way that they were for the evolutionary testing ap-
proach, but they were generated entirely randomly. All the
settings, such as the resolutions of the objects, values of
€, w1, ws, starting point of the agent, and the fitness func-
tion f were the same as for evolutionary testing, to ensure
fair comparison of results. Three experiments of 60, 90 and
120 random test cases were performed. The evolutionary
approach used in this paper is what is known in the litera-
ture as a ‘steady state genetic algorithm’ [20], in which only
one new individual is produced at each generation. This
means that, at each generation, there is only one new fit-
ness evaluation. We choose settings for random test input
generation to ensure that both the random and evolution-
ary approaches are provided with the same budget of fitness
evaluations. In this case, that means choosing the number
of random tests to be equal to the number of generations of
the evolutionary algorithm. This ensures a fair comparison
of the two approaches — evolutionary and random.
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Comparing the results obtained from randomly-generated
test cases to evolutionary-generated ones, we observe that
the fitness values of evolutionary testing are smaller (better)
than those of random testing within a similar testing time.
In fact, all of the best values of f of evolutionary testing
are optimal (f = —0.05) while none of the experiments with
random testing achieves this value. In addition, the disper-
sion of distances of evolutionary testing is more compact,
and closer to the optimal value than that of random test-
ing. This implies that evolutionary testing generates more
challenging test cases to test the cleaner agent than random
testing, though both of them can detect the faults.

5.3.2  Experiment 2

The objective of this experiment is to further compare the
performance of evolutionary testing to random testing. In
this experiment, we fix the locations of 2 charging stations,
2 dustbins, and 6 obstacles (as in Figure 6). The obstacles
are placed in the corners so that once the agent goes to these
corners, it is difficult for it to get out. In particular, we place
three obstacles in the top-right corner, forming a waste-rich
potential ‘honey pot trap’ from which the agent has only
one way to get in and out and could drain its battery there.
In this experiment only waste is placed randomly in random
testing, or with the guidance of the fitness function in ET.

This experiment was performed on a revised version of
the cleaner agent. It has the capability to find the shortest
trajectory to reach a specific location, avoiding obstacles on
the way. Moreover, we change the implementation of the
agent to make testing more challenging, by making the first
fault F1 harder to detect. Now in the goal deliberation
mechanism of the cleaner agent, the goal avoiding-obstacles
can inhibit the goal maintaining-battery if the battery level
is still greater than 5%. The fault has a chance to reveal
only the battery level goes below 5%, not 20% like in the
previous experiment.
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Figure 6: A special scenario to test the cleaner agent

The final results of detecting the two faults F1 and F2
of this experiment are described as follows. In three runs
with 90, 120, or 200 generations, the evolutionary technique
detects both faults; while with comparable numbers of ran-
dom test cases: 90, 120, 200, the random technique can
detect only the easy fault F2.

Overall, evolutionary testing, guided by fitness functions
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derived from soft-goals, outperforms random testing under
the same execution cost and time.

The significance of the test results above is that evolu-
tionary testing, following our approach, tests an agent in a
greater range of contexts, thereby accounting for its auton-
omy to act differently in each. Testing an autonomous agent
using a more standard approach can only work if the range of
contexts that influence the agent’s behaviour is sufficiently
limited that the developer can predict them all. However,
when considering systems of any substantial complexity, of
which a multi-agent system is certainly included, such a lim-
ited range is unlikely to occur. We can therefore argue that
automated, search-based testing is essential to ensure com-
plex system robustness and, as our tests show, evolutionary
testing is an excellent candidate.

6. CONCLUSION AND FUTURE WORK

Autonomous software agents are goal-directed and self-
motivated. Their behaviours are seldom determined from
external perspectives. As a result, defining test cases to
assess the quality of autonomous agents is challenging.

In this paper, we have proposed a systematic way of eval-
uating the quality of autonomous agents. First, stakeholder
requirements are represented as quality measures, and corre-
sponding thresholds are used as testing criteria. Autonomous
agents need to meet these criteria in order to be reliable. Fit-
ness functions that represent testing objectives are defined
accordingly, and guide our evolutionary test generation tech-
nique to generate test cases automatically. The longer the
time for evolution, the more challenging the evolved test
cases. Thus the autonomous agent is tested more and more
extensively.

We developed a simulation of a cleaning agent system to
evaluate the proposed approach. The observed results, upon
which we report in the paper, demonstrate that evolutionary
testing is effective. Indeed, our approach has great poten-
tial in evaluating complex software entities like autonomous
agents.

For future work, we will consider multiple sets of simulta-
neous conflicting and competing requirements. For instance,
we want to evaluate robustness in terms of maintaining bat-
tery and avoiding obstacles. Since each requirement related
to autonomy can give rise to a fitness function (or search
objective), multiple requirements call for a multi-objective
search technique. Fortunately, multi-objective versions of
evolutionary algorithms are available to deal with such sit-
uations.
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